L by]

Integrated Analysis and Reporting In
Multiple Tools

What cybersecurity and robustness testing tool
manufactures should be building towards.

Mike Ahmadi

S A, e g =

Who should be testing and why

What tools do today
What tools should be moving towards
The challenges

If | had a wish

© 2015 Synopsys, Inc. 2

Synoesys

Who Should Be Testing and Why

Why: Because
all stakeholders

Who: All
Stakeholders In aref 6_1|ffecte_d by
The Supply allures II’!
Chain cybersecurity
(but in different
ways).

\
ﬁ

However, not all

At some point

someone (usually _ \ _
the end user) has links in the chain are

to trust...but as well-suited to

verify. ‘ I perform testing.

© 2015 Synopsys, Inc. 3 SY“I]PSVS

We Are The Vendor. Trust Us...Or Else!
« CSO of a large software company THEHE Is “0 "“l“iﬂﬂﬁ".‘"y

recently posted a blog admonishing
organizations that analyze their
code...or hire others to do so.

» This did not bode well with the
security world.

. THE uun@nvﬁ@n

° makeamee;or .
Fortunately, the company took My NAM[|S EULA YEAHIFYOU attcuunusrnrnfvﬁgt
down the blog post and stated that ENGINEERING'OUR SOFTWARE

) : MII!uQ.YA. -
the sentiments expressed in the R 5
blog did not represent the i

organization’s sentiment

YOU BROKE MY OOIIE PREPARE
tonie. .. THATDBEGREAT:

© 2015 Synopsys, Inc. 4 SY“UFSYS

A Stopped Clock Is Right Twice A Day

» Despite the ranting tone of the
posting, some important points
were made.

Even a broken clock...

« To Paraphrase: Finding a lot of
vulnerabilities is far less useful
than finding ways to

— determine risks
— create prioritized action plans.

»
l 18
- e =

© 2015 Synopsys, Inc. 5 SY“UPSYS

The Risk Management Game

The formula to calculate risks is:
Likelihood x Severity

* (Where likelihood = is it likely to
happen)

* “One CISO told me that he performs risk s
assessment backwards. He says that he 5 Very Likely

already knows what he needs to do for the next
five years to develop adequate security. So he
creates some risk numbers that support his
contention. Then he works backwards to create

OPERATIONAL RISK MANAGEMENT

What is Operationol Risk Manogement?

types of loss incidents, frequencies, and e e Ly
impacts that produce those numbers. He then poputon, e
refines the input and output to make it all seem Risk =hazard sxposure x JUALSSDIRY |
plausible. | suggested that his efforts are

unethical since his input data and calculations ' B CELS

are all fake.” — Donn Parker

« Determining how to capture the right inputs for
a risk calculation is a critical part of creating a
useful output.

© 2015 Synopsys, Inc. 6 SV“UPSYS

Taking Action

» Software and applications have to ship.
That is the bottom line. We need
software to do things, regardless of the
risk.

» Organizations need to sign off on
security, and will do so regardless of of
the veracity of their information.

» True cyber assurance means having a
sign off process that enables
advancement in technologies and
ultimately product features, rather than
expending too many cycles reacting to
big security challenges.

© 2015 Synopsys, Inc. 7 SY“UPSYS

Types of Automated Tools Testing
And What They Find

 Dynamic Runtime Analysis — Finds security issues during runtime,
which can be categorized as CWE’s

— Malformed input testing (fuzz testing, DoS testing) — Finds zero-days and
robustness issues through negative testing.

— Behavioral analysis — Finds exploitable weaknesses by analyzing how the
code behaves during “normal” runtime.

» Software Composition Analysis — Finds known vulnerabilities and
categorizes them as CVE'’s and via other means.

« Static Code Analysis — Finds defects in source code and categorizes
them as Cyber Weakness Enumerators (CWE’s) and other means

« Known Malware Testing — Finds known malware (e.g. viruses and other
rogue code).

Generally speaking, all of these tests can be used to enumerate CVE’s
and CWE's, which can be (and should be) further categorized into
prioritized lists.

© 2015 Synopsys, Inc. 8 SY“HPSYS

Some Prioritized Lists To Consider

« SANS CWE Top 25 — A list of the top 25 most commonly encountered Cyber
Weakness Enumerators (CWESs), found in
(https://www.sans.org/top25-software-errors/)

« OWASP Top 10 Vulnerabilities — A list of the 10 Most Critical Web Application
Security Risks compiled by OWASP

(https://www.owasp.org/index.php/Category:OWASP_ Top Ten Project)
» Verizon Report Top 10 CVEs — List of the 10 most commonly encountered

Common Vulnerabilities and Exposures (CVES) used in exploits
(http://news.verizonenterprise.com/2015/04/2015-data-breach-report-info/)

1R

1

.....

i i

© 2015 Synopsys, Inc. 9 SY“UPSYS

What Can’t Be Easily Automated

* What the “dark wizards” of the
world of security research find.

« Small numbers of researchers
that are the “special forces” of
the security world.

o« Commonly referred to as
hackers.

© 2015 Synopsys, Inc. 10 SYHUPSYS

What Malformed Input Testing Finds

« Essentially, ways to get a system or application to misbehave or fail
through misuse (intentional or otherwise).

* This can be as simple as a single bad packet.

* Once failure modes occur they can lead to ways to ways to take down
a system or introduce malware (or both).

© 2015 Synopsys, Inc. 11

SYNnoPsys

What Behavioral Analysis Finds

© 2015 Synopsys, Inc. 12

Watches what code is doing while it is running.

Can be a useful way to eliminate false positives, as long as every possible state is

executed during analysis.

Can determine contextual risk of an exploit.

Works well with web services and traditional IT systems, more complex for embedded
systems and RTOS environments.

S rpacton - e Exglotable - Unat
WA Iegection - e Exghatadle - (nadt
rom Sibe % L

e . € s U

 Pamcrds Shond 8 Ouriust » Ot |

¥ A b o) (2
- - .

W

XSS — Standard Persistont - Unauthenticatod Users - Entry Point
| Quegagy, Cisotecor Technsy Duints, Vides Famdeten Pl v

The txtUscrirstName parameter in the [POST] http://127.0.0.1:80/
luftbank/userRegistor. aspx page receives input from the user and places
it in the application database.

(CEeT) http://127.0,.0.1:80/1uftbank/userWelcone . aspx?
usorID=15102 returns this input to other users,

By embedding a script into the value received from the user it is possible to
execute this script on the browsers of other users who access the page.

In the exploit, the following script has been embedded into the
txtUsryicstNane parameter in the input page:

<SCRIPT>aval llocation. hash. yubstr(l)) </SCRIPT>

::l:ﬂngbnmhmdzwwaﬁnsmewbdumdmthemk
yser:

& e T MNP

AN e sinll » e
S RIS R
- u@v_’_) QR op Qe

Synoesys

What Software Composition Analysis Finds

 Looks at compiled code and SCADA W "1 TP i
determines what third-party (or
proprietary) components it is
built from.

* Queries databases of known
vulnerabillities for identified
components and lists them out.
Finds CVEs.

» Controversial because all

identified vulnerabilities are not - e
necessarily exposed. i

5 A ===

« Can automatically track ey
vulnerabilities in a software -
package over time. | e

© 2015 Synopsys, Inc. 13 SY“UPSYS

What Static Code Analysis Finds

 |dentifies defects in source code.

e |dentifies CWEs

* Like software composition analysis, can be controversial because
Identified defects can range from trivial (low or no real risk) to critical

(high risk).

© 2015 Synopsys, Inc. 14

SYNopsys

What Known Malware Analysis Finds

e This is the new generation of

antivirus type tools with a lot of g m,,, e =
additional capabilities and [[——
features. e [—————
s [
. _ e s
e Malware is created to exploit e [PRTR—
vulnerabilities, or simply run s [T
“uninvited” as privileged |~
applications in an environment e Rt
that allows such actions. e R
e [
I o o P oy Commars it
» Tools need to check for - e
existence of malware against a [e
known database. Some tools m“‘n"" .

use heuristics.

© 2015 Synopsys, Inc. 15 SY“UPSYS

What Security Researchers Find

» Some of what was previously mentioned

e A Iolt that cannot be easily discovered with automated
tools:

— Physical ports and interfaces

— Undocumented and hidden services
— Hidden back doors and passwords
— Configuration errors

— Failures in process

* True experts are few and far between and very
expensive.

* No real formal training exists

» Tend to stop or ease up on testing once a big exploit
emerges...or once a specific target is reached.

© 2015 Synopsys, Inc. 16 SY“UPSVS

What To Do With All The Information

* If a software component has a lot of
vulnerabilities, you can update to a ok <Controi
less buggy version. Stack<Control>();

* However, research inevitably
uncovers vulnerabilities in newer
versions.

* What is the latency period between
versions?

* How long until a new fix comes out?

 How often is the code scrutinized for
bugs”?

© 2015 Synopsys, Inc. 17 SV““PSYS

Inference Through Multiple Data Points

* Knowing CVEs, CWESs, and defect density is more useful

than knowing only one of these.

« Knowing how often a codebase is maintained for defects
IS more useful than a single scan resuilt.

» Multiple data points draw a better picture.

vt b perty CoPgeresh

| g BeCA

s

L e S Ll)

© 2015 Synopsys, Inc.

18

COVERITY —=—

=' - : R Rl
—

Anabpin Memrcs m
| diae |
e/
T —

SYNopsys

An Ingredient List

Software bill of materials

gﬂﬁpleme"t f?cts Component: Version License
Ihl:'dg:r"::l] :I'L\E::h pig: blnd g 5 0 I SC
o ™ % | commons-lang 2.4 Apache
i 1 Bimic 1% a5
Poa 4 | openssl 0.9.6f 1 Apache
Tﬂ;_l-ur-,- Fiber = less 1f::;1 1g ;: 111]: 0.9.7a t
Sugars 4q Bg 0 g 89 t
Other Carbolwdrate less than 19 19 -
Vitamin Ba (niacn, nlacinamida) 4mg 0 Hmi 1 . 0 OJ t
Vitamin B (pyridoxine HC)___ dmg __ 200% H*a pcre 7.6 BSD
Vitamin Bz [cyanocobalamin) 15meg 250% 30
" l-l:l-l-ﬂll '_|J‘I.I_ .,a.-:-q. e L'.Taj on g 000 camwie Clesl rsync 2- 6- g G pL
Other Ingredients: Linux Kemel, Zlib, GLibC, Opan3sl tCI 8.5.0 BSD

1| zlib 1.2.1.2 zZlib

1 Daily Value not established

Other Ingredients:

Simply knowing software “ingredients” arms a user with an
enormous resource for determining risk.

© 2015 Synopsys, Inc. 19 SY“UPSYS

Understanding Context

e Let's use Heartbleed as an
example:

— Scored a 5 CVSS score (not
considered critical)

—VYet, if found in a server
application, it is indeed very
critical.

— Not nearly as critical if found in a
client application.

v
°
E.
b
°
o
b

=

=

(o]

L

—_
- Sesans .. S
(Masssssacssss sassioocce

asassasaiis diii%iE

© 2015 Synopsys, Inc. 20 SYHUPSYS

If Only...Finding Weaknesses In
Software was as Easy as...

Robert A. Martin

Senior Principal Engineer
Cyber Security Center
Center for National Security

The MITRE Corporation

MITRE

© 2015 The MITRE Corporation. All rights reserved.

Assurance About Mitigating the Attacks That
Can Impact Operations

Known Attack Weaknesses & Counter Technical Operational
Threat Patterns Vulnerabilities Measures Impacts Impacts
Actors (CAPECS) (CWEsS/CVEsS) - Actions*

: 4 1ﬂml+ Item +1- —+ Impact

-
X

|
1
|
N
|
I
I

=% Item T--

System &
System Security|
Engineering
rades

. Modify data \

. Read data

. DoS: unreliable execution

. DoS: resource consumption
_ _ _ . Execute unauthorized code
* “Counter Measures - Actions” include: architecture or commands

=
2
3
4
5
choices; design choices; added security functions, 6. Gain privileges / assume
7
<

|.
._.T Weakness T-—-+ Item

activities & processes; protection schemes; physical identity _
decomposition choices; static & dynamic code . Bypass protection
assessments; design reviews; dynamic testing; and
pen testing

mechanism

. Hide activities
_ATRE

Exploitable Weaknesses, Vulnerabilities & Exposures

e Weakness: mistake or flaw condition in
ICT architecture, design, code, or process
that, if left unaddressed, could under the
proper conditions contribute to a
cyber-enabled capability being vulnerable
to exploitation; represents potential
source vectors for zero-day exploits --
Common Weakness Enumeration (CWE)
https://cwe.mitre.org/

WEAKNESSES

ey

- ~
(4 N\

= VULNERABILITIES
* Vulnerability: mistake in software that (4 \ |
can be directly used by a hacker to gain Unreported or Uncharacterized
undiscovered \ Weaknesses

access to a system or network; Exposure:
configuration issue of a mistake in logic
that allows unauthorized access or

Vulnerabilities

I CVEs

P o (reported, CWEs
E))EELOSI:(J?‘E?EVE)CﬁErT;?/?C\\//zlrr1r1ei;?|eo Itlalg/and I publicly known Zero-Day [(characterized
- . . vulnerabilities Vulnerabilities discoverable r.’)ossibly
* Exploit: take advantage of a weakness (or | and exposures) (previously unmitigated exploitable '
multiple weaknesses) to achieve a weaknesses that are weaknesses with
negative technical impact -- attack exploited V{“th)"tt'e J mitigations)
or no warning

approaches from the set of known exploits
are used in the Common Attack Pattern
Enumeration and Classification (CAPEC)
https://capec.mitre.org

e The existence (even if only theoretical) of
an exploit designed to take advantage of a
weakness (or multiple weaknesses) and
achieve a negative technical impact is what
makes a weakness a vulnerability.

Assurance Comes From Managing
Weaknesses and the Supporting Evidence

Threat
o
Threat Vector

L. N7 -
Eliminate Mitigate
® Weakness 77

b

vu@'“ﬂceptable Impact

Block from Attack € Control 3 Ajarm for Attack/Exploit

¥
Implementation

¥

Test

MITRE

Common Weakness Scoring System
(5 Sep 2014)

Base Finding Group

* Technical Impact

* Acquired Privilege

e Acquired Privilege Layer
* Internal Control Effectiveness
* Finding Confidence

Attack Surface Group

* Required Privilege

* Required Privilege Layer
* Access Vector

» Authentication Strength
* Level of Interaction

* Deployment Scope

Common Weakness Risk Analysis Framework (CWRAF)

* Vignettes
 Technical Impact Scorecard

MITRE

R e

H"'H‘I“l” ‘HI’”I‘ ‘I”IIHI"

T

ITU-T X.1525

COMRALICAT (0472015}

SERIES X: DATA NETWORKS, OPEM SYSTEM
COMMUNICATIONS AND SECURITY

= Cybersecurity information exchange — Vulnerability/state
axchange

Common weakness scoring system

ITU-T X.1525
(Mar 2015)

Environmental Group

—*» Business Impact

» Likelihood of Discovery

* Likelihood of Exploit

* External Control Effectiveness

* Prevalence

CWRAF/CWSS in a Nutshell

CWSS

Scoring ”

“Vignette

Engine

Most

Important
Weaknesses

User-defined

cutoff

score | M
97 CWE-79
95 CWE-7/8
94 CWE-22
94 CWE-434
94 CWE-798
93 CWE-120
93 CWE-250
92 CWE-770
91 CWE-829
91 CWE-190
91 CWE-494
90 CWE-134
90 CWE-772
90 CWE-476
90 CWE-131

W is all possible weaknesses

MITRE

Wd is all known weaknesses (CWE)

Calculating CWSS Impact Weights

10 — Execute unauthorized code or commands

6 — Read data Technical
3 — DoS: unreliable execution Impact
2 — DoS: resource consumption Scorecard

CWE-x CWE-y CWE-z
Execute Unauth. code DoS: Unreliable execution Read data
DoS: Resource consumption Read data
Max (1(12) / 10.0 Max (3, 6) / 10.0 Max (1) / 10.0
1.0 0.6 0.1

MITRE

Making Use of the Prioritized List of Weaknesses
to Identify Assessment Techniques

Code
Review

Static
Analysis
Tool A

Static
Analysis
Tool B

Pen
Testing

Services Q O

CWEs a capability
claims to cover

Most
Important

Weaknesses
(CWESs)

Which static analysis
tools, reviews, and Pen
Testing services find the
CWEs | care about?

MITRE

itpycist. sonarsource.comreports/ coveragelonelobic_cwe_cov.. [L DT - S ——

Objective-C coverage of CWE CWE Support of SecorsyPris=

CWE Coverage —

s s
CWE-120 Ptpicis sonarsouroe. comireports/coveragelScus sem. st e
s w3 e e ey P b
ey ey S
N sl)
CWE-394 Java coverage of CWE i g e b o o s et oy e o Bt e
CWE-478 CWE-20 52077 Values passed to SQL commands should be sanitized
CWE-481 CWE-78 52076 Values passed to OS commands should be sanitized l
ERAMMVATECH WE Coverage for
S o e s . g e e w—
CWE-88 52076 Values passed to OS commands should be sanitized -
CWE-482
CWE-89 52077 Values passed to SQL commands should be sanitized
EWE Ceverage for CodeSonar® CWE IDs mapped to Klocwork Java issue
CWE-483 CWE-90 52078 Values passed to LDAP queries should be sanitized AL -ommon Weakness Enumeration (CWE) initiative is focused on creating a commps
” software security vuinerabilty descriptions. Such a set llows clear communication bese} t“:-.'
c 00 o6 vath s should b et imsssammay ferent parties with interests in computer security, including researchers, tool designery
CWE-484 WE-1 184 Math operands should be cast before assignment
Wi oot et describes and categorizes hundreds of different weaknesses, each of which is dete Froem curre
¥ Lo sisite. We refer to individual weaknesses in the set by their numerical CWE IDs.
CWE250 $2068 Credentials should not be hard-coded L
CWE-561 =
CWE-293 52089 HTTP referers should not be relied on LW ID% Detected by CodeSonar:
CWE-628 T bpemmseeg bl lss the CWE IDs and their cortesponding CodeSonar
CWE-310 52245 Pseudorandom number generators (PRNGs) should not be used s . 2ase note that some CodeSonar warning classes do not has
secure contexts — n:
§ 8 BAD_PRACTICE J2EE
CWE-676 CWE-326 52245 Pseudorandom number generators (PRNGs) should not be used & INTO_SESSION
secure contexts BADFUNC.MENSET
52278 DES (Data Encryption Standard) and DESede (3DES) should nof fe I0.TAINT.CONF
used F 1O TANTSIZE
CWE-682 i 1OTANTANAME
CWE-327 52070 SHA-1and Message-Digest hash algorithms should not |OTFANEFNA ME
. 101N, COMMAND
2 52257 Only standard cryptographic algorithms should be used
CWE-783 o yplographic &l O CENZ] C 5 SECURITYXSS REQUS
[———— 8 SECURITY.XSS REQUS
CWE328 52070 SHA-1and Message-Digest hash algorithms should not S Uy T
¥ 78 SECURITY.XSS_REQU.
lof1 CWE-330 52245 Pseudorandom number generators (PRNGs) should not juf 10.INJ.S¢ H‘-"‘lﬁ'l:l:l A re - i B
F QL 78 SECURITY.SQL NONC [ek =l e o
Eamge Profund Bt m CWE Compmbia 78 SECURITY.SQL_PREPi] [T S— 0.
NONCONSTANT_STRING [P oy Sy :“.’“‘ WRMSLEC BT 4 ‘AT — — —
. Cain Al L Ern Pl wew
T e ST T T T . [T [o S s st rmis e
Crramir Fovk ety R . 10 TANTADDR MBS R TR —
. C et) % o e i s At i 1O TANTENAME TEErTE
) coverity g ey i
e LA A AR LT, T 3 o LT~ T ——
T B SECURITY.HRS REQLY CESEE
B SECURITY.HRS REQLS
14 10.IN).LIB
L — - 119 LANG ME.FRLOOP
o - - . s MISCNEGCHAR
Coverity Coverage for Common Weakness i) = o e v 3
. . i oy o "t = e s Wl e A
- i BADFUNC.80.GETPASS tostmtin B S
Enumeration (CVWE): Java v i ol T VERAGCDE
e, *™ L R h---u-b-m—- : .
[=t Sy L
= = e T
751 g for Red Hat Customer Port - R Hat Custom. [l ———— P ——
— —_— s waws i mtan ks by vy e
— “ﬂﬂtﬂ“" o T
— oy | CUSTOMER PORTAL B o T —
- = vt
1 e T L - r o®
- — % - . Uit il 0 5 L, Sl
= Coverity Coverage For Common Weakness e hotcsy bt
= - . AL A 5
. Enumeration (CWEE C/Css : e o o b e o ot s o i rin T e r——— noow
- - 3 . i Wit sl 41 @ 0 v [
- — W . o Comrmns vysctiant
=l v —— L]
E . 3 i
— [e =R e 7P Response # CWETS improper Newtrsiration of mpet Barmg. R R
= - - sl - B e T SrTT s PR AVe Mitreor/data/definitions/i3) Web Page Generation (‘Cross-site
—— — i - o — - - Scripting’)
[— m A /1
e e et - - S ——— TS . o wi
- T 9 CWE-434 Unrestricted Upload of File with x x
i - — = S ————— Dangerous Type
- 4 —— - - - ——
- el — r- e 12 CWE-352 Cross-Site Request Forgery (CSRF) X
- Tk o 22 CWE-601 URL Redirection to Untrusted Site (Open X X
s e 41T al Redirect’)
EETL . T - —_— ject
- —— unquoted " is the pipe symbol). Fafinder is des gy Rank D Risky Resource Management - o
— it your 0 1o et a st of CWEs it ol ey These weaknesses are related to
——— - = ..“m,','gg "o (et ety woul reprt any s am insecure ways in which data is sent and
—— " itwould only received between separate components,
. sl GWE sy domes (o s 00 Neutalization of Special Elements (htp /cve mitreorg P P
—— e o e e e]) modules, programs, processes, threads,
- m the defauit risk level, and the default warning (rm— or systems.
S —— > a purposes this is also enough if you wart to see whej
S, . cmmoper Nl Tesminaton (/e it o/ Oata/Getiions/ 70
= reverse. For example, 0 see the most of the signa] P e o 3 CWE-120 Buffer Copy without Checking Size of X x
. = - e Order Input (Classic Buffer Overflow’)
Flainder 3Au20) i
— - = e 13 CWE-22 Improper Limitation of a Pathname to a X P —
- i Restricted Directory (‘Path Traversal’)
o - P
e s MI I E

Assurance & the Systems Dev.

Life-Cycle...

N
Abuse Case |~ . . .
Development Application Security Code

Review (developed and

Gather All of the
Evidence for the

Cyber purchased), Penetration Assurance Case and
Threat/ Testing & Abuse Case Get It Approved
Attack Driven Testing
Analysis |
(Program V
A B \Initiation C I0C FOC

Concept | Technology | System Development Production & Operations &

Refinement | Development & Demonstration Deployment Support
and Systems
Concept Desian O Design O FRP
Decision esig %:ehaess LRIPNIOT&E g:s:z‘xn

Pre-Systems Acquisition Systems Acquisition

Attack-based
Application Design
Security Review

Attack Analysis against
Supply Chain &
Application Architecture
Security Review

* |deally Insert SwA before RFP release in Analysis of Alternatives

Sustainment

Application Security Code
Review, Penetration Testing &
Abuse Case Driven Testing of
Maintenance Updates

MITRE

Leveraging and Managing to take Advantage of
the Multiple Detection Methods

m Different assessment methods are effective at finding
different types of weaknesses

B Some are good at finding the cause and some at finding the

effect
Static Penetration Data Code Architecture
Code Test Security Review Risk
Analysis Analysis Analysis
Cross-Site Scripting (XSS) X X X
SQL Injection X X X
Insufficient Authorization Controls X X X X
Broken Authentication and Session Management X X X X
Information Leakage X X X
Improper Error Handling X
Insecure Use of Cryptography X X X
Cross Site Request Forgery (CSRF) X X
Denial of Service X X X X
Poor Coding Practices X X

MITRE

Technical Impacts — Common Consequences
Detection Methods

QU

EOTEEN CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection’)

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Fu® Dictionary View
Development View
Research View
Reports

[About |
Sources
Process
Documents
FAQs

| Community |
Uset & Otations
SwA On-Ramp
T-Shirt

Descussion List
Descussion Archives
Cormtact Us

CWsS
CWRAF
CWE/SANS Top 25

Reguirements

Coverage Claims
Representation

Compatible Products
Make a Declaration

Calendar
Erug M

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

¥ Applicable Platforms

Languages
All

Technology Classes
Database-Server

¥ Modes of Introduction
This weakness typically appears in

¥ Common Consequences

Scope
Confidentiality

Access
Control

Access
Control

Integrity

* Likelihood of Exploit

| CQU/SS.

Effect
TYechnical Impact: Read|
Since SQL databased
SQL injection vulner
Tachnical Impact: 8ypal
If poor SQL comman|
to a system as anotH
Technical Impact; Sypal
If authorization infor]
through the successf
Tachnical Impact: Modi!
Just as it may be po
delete this informatid

¥ Detection Methods
Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow
analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being performed, leading
to false positives - i.e., warnings that do not have any security consequences or do not require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-party libraries
that indirectly invoke SQL commands, leading to false negatives - especially if the API/library code is not available
for analysis.

This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate incorrect results,
Effectiveness: Moderate

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within
limited time constraints, This becomes difficult for weaknesses that must be considered for all inputs, since the
attack surface can be too large.

¥ Demonstrative Examples
Example 1 N

ssinen snsmnensnlond iinlnm bhn cnmnn COL lainablon sbbanls sbelnm Thin slanla

MITRE

To WANO w lacnn nicombne af iiinb cnminen

Detection Methods — updated with SOAR

Home > CWE List > CWE- Individual Dictionary Definition (2.5)

Fu® Dictionary View
Development View
Research View

¥ Applicable Platforms

, (e | C/SS.
< W Common Weakness Enumeration st sassenees —
« A Community-Developed Dictionary of Software Weakness Types lmllllllllll ‘ ‘_“lf RAE

search by 10: EJI ©3

CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection’)

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

Languages

According to SOAR, the following detection technigues may be useful:
Highly cost effective:

au l ¥ Datasiion Maobhade

automated static analysis tools. Many modern tools use data flow

+ Bytecode Weakness Analysis - including disassembler + sou
* Binary Weakness Analysis - including disassembler + source

Effectiveness: SOAR Migh

Dynamic Analysis with automated results interpretation
According to SOAR, the following detection techniques may be useful|

Highly cost effective:
+ Database Scanners
Cost effective for partial coverage:

* Web Application Scanner
* Web Services Scanner

Effectiveness: SOAR High
Dynamic Analysis with manual results interpretation

According to SOAR, the fallowing detection techniques may be useful|

Cost effective for partial coverage:
» Fuzz Tester
* Framework-based Fuzzer

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Highly cost effective:
* Manual Source Code Review (not inspections)
Cost effective for partial coverage:
« Focused Manual Spotcheck - Focused manual analysis of source
Effectiveness: SOAR MHigh
Automated Static Analysis - Source Code
According to SOAR, the following detection technigues may be useful:

Highly cost effective:
= Source code Weakness Analyzer
+ Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR MHigh
Architecture / Design Review

According to SOAR, the following detection technigues may be useful:

Highly cost effective:
* Formal Methods / Correct-By-Construction

Cost effective for partial coverage:

+ Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: SOAR Migh

MITRE—

Detection Methods web page

anA CWE - Detection Methods e

& cwe mitre.org/community/vwa / detection_methods html

\\:};/ Common Weakness Enumeration o s
QU fomm R oy | oRar

Home > Community > Software Assurance > Detection Methods Search by ID: 3
Eor——
o ves | Detection Methods
Dewplopment e Engineering for Attacks
m. : e The “Detection Methods" field within many CWE entries conveys information about what types of assessment activities Software Quality
Mapping & Navigaton | that weakness can be found by. Increasing numbers of CWE entries will have this field filled in over time. The recent Prioritizing Weaknesses
Institute of Defense Analysis (IDA) State of the Art Research report conducted for DoD provides additional information Mm. “b:‘;t"m‘
Sources for use across CWE in this area. Labels for the Detection Methods being used within CWE are: Ml“t'm,' s
Procewt Staying Informed
DRryermpniy &
rACH * Automated Analysis . * Manual Analysis Finding More Information
= Automated Dynamic Analysis = Manual Dynamic Analysis Other Items of Interest
Use & CRations s Automated Static Analysis « Manual Static Analysis Discussion List
Smh On-REma » Black Box = White Box CWE MNewsletter
::m et s Fuzzing Terms of Use
Conta U
With this type of information (shown in the table below), we can see which of the specific CWEs that can lead to a
Pricritiration specific type of technical impact are detectable by dynamic analysis, static analysis, and fuzzing evidence and which
Cnss ones are not.
CWRAF
OWE/SANS Top 25
This table is incomplete, because many CWE entries do not have a detection method listed.
m Technical Impact Automated Automated Automated Black Box Fuzzing HManual Manual Manual | White
Aapressriation Analysis Dynamic Static Analysis Analysis Dynamic Static Box
Campatibie Prodocts Analysis Analysis Analysis
Make 3 Declaration Execute 78, 120, 129, 78, 79,98, 120, 79, 129, 28, 120, 476,798 78,798
unauthorized 131, 476, BOS 129, 131, 134, 134, 190, 131, 190,
Calendar code or 190, 426, 798, 426, 494, 426, 494,
| Fros Newsletter commands BOS £98, 798 605
— Gain privileges / 601 306, 352, 426, 259, 426, 259, 306, 798 601, 798,
assume identity 601, 798 798 352, 426 807
Read data £09. 311, 78.689.139. 76.79.89 129]14.79. B3, 131, 209,404, 78,798 14
327 131, 209, 404, 131, 134, 353, 129. 134, 209, 311, 665, 798
GES 426, 798 ﬁ. 426 E 332,
Modify data a1, 327 78,89, 129, 78, 129, 129, 190, B9, 131, 8 MITRE

If | Had A Wish

e Automated toolsets that figure this out through a well defined
workflow.

—1 know it is a lofty goal, but thinking big is what drives progress.

— Today what we can do is capture good data and apply some wisdom in a
manual manner.

o If | had one more wish, | would probably wish for time travel, because
It jJust seems cool.

/\x

Penetration Malformed
Testing Input Testing

Known Dynamic
Malware Runtimea
Analysis Analysis

e_

© 2015 Synopsys, Inc. 36

MITRE

Questions?

Mike Ahmadi
mike@codenomicon.com

Bob Martin
ramartin@mitre.org

SYNOPSYS

